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(U) The deductive turbulence theory proposed by Chandrasekhear is
based on postulates of homogeneity, isotropy and stationary sltate
and also on the hypothesis of quasi-nor-mality (hyrpothesis off
Millionshchikov) associftting correlation tensors of the second
and fourth rank. In this paper the authors generalize the equations
of Chandrasekhar for the case of non-stationary turbulence. There
is derived a dynamic equation for determining the scalar correia-
t-ion tensors describing a two point space-time c 'relation of the
veloc,-ities of turbulent flow and constituting a generalization of
t%-he equation of Chandrasekhar for stationary turbulence. In the
derivation there were assumed conditions of homogeneity and isotropFY
.nd also the generalized hypothesis of quasi-normal dis~rr:butfon or
velocities. In the case of the direct derivatlion o-f the stationaryr
equation there is obtained a pair of equations that have not been
considered by Chandrasekhar. But these equations have to be disre-

garded because they cannot be obtained from a non-stationary equa-
tion. In principle it is possible to obtain another equationfo
non-stationary ti;-bultence whsich has not yet been irnrtstixatedi. Tir,ý
gene~ralized equation of Chandrasekhar correctly descxl~bes thle 'Last
st~ague of the origin of turbulence. The stationary f~utn ofI*
Charndrasekhar, for the spatial-t~emporal lonfrit,.adinal c-rrrcilatiorn
functilon cart be solved by representing the'solution 1.r, a pOWcr
azries, Orig. art. has: 2 figures, 11.2 formulas.
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DAILY VARIATION IN THE TURBULENCE
COEFFICIENT ABOVE FLAT TERRAIN

V. D. Litvinova

Results are given of aircraft investigations
of turbulence around Dolgoprudnyy from an altitude
of 100 m to 3 km. It was found that under anti-
cyclonic conditions the maximum value of the
turbulence coefficient at all levels is observed
around 1300 hours. The value of the maximum
depends on the thermal stratification of
atmosphere. Diurnal variations in the turbulence
coefficient are most noticeable at a height of
100 m.

For investigation of a number of physical processes in the

atmosphere it is necessary to know the intensity of turbulent

exchange of heat, moisture, and momentum.

Experimental investigations of the conditions of appearance

and distribution of turbulence were conducted at TsAO (Central
Aerological Observatory), GGO (Main Geophysical Observatory),

and others. For free atmosphere the most detailed investigations

of variability of the turbulence coefficient with time, he-ight,
and horizontal extent are given in the works of P. A. Vorontnov rI],
N. Z. Pinus [5], and V. Ye. Minervin r'].

In this work, according to data from flights conducted by

TsAO in 1946 on a PO-2 aircraft in the Dolgoprudnyy area, certain

characteristics of turbulent exchange In the lower troposphere are

examined.

FTD-vT-24-I4l-69
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1he aircraf. carrie-d a raeZeorograp•r, aiac an accelerograph of

type SP-ii, intended for reco'Y>Ir, 7 of' trb• aircraft in the vertical

plarie, During 7lights vertical souuding t-fas made of ý,Ae atmosphere

with piatforms at heights of 100, 301), 500, 1000, 1500, 20'00, and

3000 -r above the earth's sur-'ace. The duration of recording of

accelerograpl' on these platfor:-s did not exceed one to two minutes.
Ti all 48 flights were made, one or two flights a day, with four

series of quickened soundings of the atmosphere being i.ade on three

to fivc f2_ights daily.

in 1965 all data from these flights was reanalyzed, coefficients

of turbulent exchange were calculated, and graphs of dependence

of the coefficient of exchange on heights and time of day were

plotted. The coefficient of turbulent exchange wis calculated by;

the Lyapin-Dubov formula, definitized to M. A. German in work [2":

VIs rVI WI

where V- average flight speed of aircraft on given platform,
IWV - average absolute velocity of vertical gust of air, during

the calculation of which the mechanical and fli-ht characteristics

of the aircraft were considered, A -- average time of preservation

of sign of pulsations ifn speed, I-- value of transfer function for

* the given type of aircraft, given in work [31.

Below will be exsmined *Qnly cases of quickened sounding

of the atmospnere.

-. Flights of 11 August 1946

On 11 August 1946 three flights were made at 13:7, 1552, and

1830 hours. Flights passed through the central part of an anticyclone.

Variable overcast with weak north and nori.:,w,;-t wind;. was observed.

Platforms were at heS7i ts of 100, '300, TOG,, -0)C'. an'1 ,,,r r

.2-69
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Fig. 1. Vertical profiles of the
turbulence coeffi2ient, a) 1946,
b) 12 Aug 1946, c' 29 Sep 1946,
d) 25 Oct 1946.

As can be seen from Fig. la during the flig.t of the aircraft
2at 1317 hours the value of K at a height of 100 m was 24 m /r, at

2/2
500 r- - 18 m2/6, and at 1000 -m-- 21 ais. The value of K then

decreases rapidly to 2 mn/s at a height of 2 km. At a height of

3 ki the flight was calm. The vertical temperature gradient varied

from, 0.7 to 0.90/100 m. At a height of 2.8 km there was an inversion.

At a height of 1.5 km was the lower FrCu and Cu cong boundary.

Unfortunately, no Z recording was made at this height.

In 1532 hci.rs the value of the turbulence coefficient at
2~~ 2 0 w s !

100 m was .8 r /s, at 500 m - 15 m /G, and from 1000 m the flight

wwas cain. The vertical temperature gradient to a height of 6') m

was 10i/100 m, and at higher altitudes 0.150/100 m. At 2.8 km

= 0,1/100 m.

At 1830 hours the turbulence coefficient at 100 -a. was 12 P 2,

and at 500 m the flight was calm. T-e value of N changed from

0.75 to i2/,100 m, and at 2.8 km a temnerature inversion was observed.

As can be seen from F! g. !a, maximum intensity of" tu,.',uier'ce

} I was observed at 1300 hours, and it graduall.y weakened toward

1,ý00; at a height of 1iO m. the value of the turbulence coeff:'cLenrt

decreased frcm 24 n-/s (at 1300) to 12 m2/s (at 2.800), anu at

g 
2
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S50 m decay of turbulence toward evenhng was still faster: from
223 m /s at 1300 to 15 m2/s at 1530, and at 1800 at this height

flight was absolutely calm. As can be seen. changes of turbulence
coefficient with height follow well the changes with height of the
verti al temperature gradient, especially in daytime houis, With

decrease of the vertical temperature gradient of the value cf K

decreases,

2. Flights of 12 August 1946

Flights passed through the central part of an anticyclone

during scantily clouded weather with weak northwest winds at the
surface. Flights were made at 0552, 0848, 1139, and 1736 hours at

heights of 100, 500, 1000, 2000, and 3000 m. The turbulence

coefficient was calculated for only the last three tf.ightz, since
the first was calm. At 100 m at 0848 hours the value of
K = 1. m2/s (Fig. lb). In the layer to 300 m were observed raised
values of vertical temperatu5'e and wind gradients (y = 0.920/100 m,

3 = 0,83 m/s/100 n). In the 300-2560 m layer values of -Y did not

exceed 0.350/100 m, and ý was not over 0.35 m/s/100 m. AT 2560 m

* was an inversion.

Further flight in the entire layer sounded was calm. In

1139 hours the on vertical profile of the turbulence coefficient

Swo maxima are observed. The first maximum, caused by the

influx-nce uf the underlying surface, is at a height of 100 m; t•.e
value cf K here i. 16 m /s. The value of the vertical temperat-ure

* •- gradient is 0.861/i00 m, and that of wind is 7.1 m/s/lO At

500 c 'the value of K is 11 M2 /s, and then again increases, attaining
18 I2 /s at a height of 100 m. Appearance of the second .maximum of

the turbulence coefficient can be explained, apparently, by therm.al

straatification of the atmosphere. For this layer there zharacteris-
tically is presence of a large val'ie of vertical temperature gradier.:
S( = 0.970/100 m) and sharp decrease of vertical wind gradient
(to 0._35 m/s/l00 m). Above this level flight was calm. By 1736 hours

there is aecay of turbulence in the entire soundedl layer. Values
of K at all heigrhts to 1000 m by this time no ionflcr exezcer-,d
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se'zeral -,/s. At heights of 2000 and 300") m f.it The

verUical. temperature gradient in the 300-1.300 m layer equaled 4

0.82-0.94°/100 m and at the surfs ce of earth and at high altitudes

was 0.64-0.73°/100 mp. The value of 3 to a height of 3000 m was

S2.172 m/s/l00 m, and further 0.1-0.3 Vn/s/l00 Tn.

3. Flights of 29 September 1946

Flights passed through the spur of an anticyclone. Cloudless

weather with weak north winds at the surface was observed.

Data obtainea in this day are the most interesting. During

the day six flights were made. Therefore it waG possible to

trace most fully the atmospheric composition to a height of' 2 kn.

Fligh s were made at 0640, 0338, 10N9, 12338, 133, and 162, hours

at heights of 100, 300, 500, 1000, 1500, and 2000 m.

According to data from five flights vertical profiles of the

turbulence coefficient were plotted. For the 1625 flight the

turbulence coefficient was not calculated, since turbulence was

not observed continuously, but only at times.

A's can be seen from Fig. lc, at 0640 the turbulence coefficient

2
at 100 m was 17 m /s, while at higher altitudes flight was calm.

In the layer of atmosphere from the earth to 400 m a deep in'version

was observed. By 0838 the temperature inversion had vanished and

the vertical temperature gradient increased rapidly to 1.000/100 i.,
while the wind gradient increased to 5.75 m/s/lO0 m, At 100 yr

K = 12 . /s. By 1029 the vertical profile of K significantly

changes. On the figure is seen a well-defined maximum of the

turbulence coefficient in the layer from the earth to 500 m, where

K = 14-19 !2/s. At heights from 1000 m to 2000 m flight was calm.

Values of vertical temperature gradient to a height of 1100 m

varied from 0.8 to 1.00/100 ti and wir- gradient varied from
0.2 to 1.0 m/s/3.00 m. By 1238 hours atmospheric turbuien-,e was
c itrengthentd sharply. On the profile of the turbulence coeff1*c-en-r

H S



two maxima are observed. At a height of 100 m K = 40 m 2/s, and

then there is a certain tendency toward slight decrease at a

height of 300 m, after which the value of K increases to 500 m,

where it attains 35 m /s. At 1000 m K = 31 m2/s. The vertical

temperature gradient in this layer is equal to 10/1000 m, and

that of wind is 0.15-0.58 m/s/lO0 m. At heights of 1500 and 2000 m

flight was calm.

By 1433 the vertical profile of K has more smoothed form. In

the layer from 100 to 500 m the turbulence coefficient was

20-24 m and at 1000 m was 10 m2/s. In this whole layer the

vertical temperature gradient is equal to 10/100 m, that of wind

to 0.15-1.00 m/s/l00 m. At 2000 m flight was calm. By 1625 almost

full decay of turbulence had taken place.

0% Fig. 2. Daily variation
"a • of turbulence coefficient

% for various heights.
I

N "I

a: •

I # IF U Oh

In Fig. 2 is represented daily variation of turbulence

coefrictent at heights of 100, 500, and 1000 m. As can be seer,

from the figure, by 0900 hours turbulence extv.nd- to an Ira.•,11nf~tcar,.

height, with values of K = 12-1'( m2 /s being it~alned at. a n-light.

of 100 m. When at 100 m turbulence is develo:oire, Lt si.arttr 1.o

spread upwards. Although turbulence at 100 ri. starts to develop

considerably earlier (around 0600), it attains maximum at all

heights simultaneously from 1200 to 1300 hours.

6
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SThe value of th"e turbulence coefficiuent during .& i.
2 2'0 m /s at IOC m, gradually dropping with height to 31 m /s at 1000 r.

Then the intensity of turbulence decreases and at 1433 K changes

from 24 M2/s at H = lO0 m to 10 m /s at H = lO00 m.

For more detailed consideration of this effect in Fig. 3

it is shown how the value of K changes with time at various heightg

in daylight hours.

i(At

5 ~ ~ - -- 5 -

V A

*fit,
1 '5

SFig. 3. Time cross section of the
"turbulence coefficient for 29 Sep 1946.

A Unfortunately, there are no night observations. Apparently,

at nignt, when in the lower part of the troposphere temperature

stratification becomes stabler, the intensity of turbulence should

decrease sharply.

4. Flights of 25 October 1946

Flights passed through the rear part of a cyclone, where

s3condary fronts, displaced to the south were observed. In

the Moscow region were observed stratus clouds, weak snowfall at

times, end rnorthwest wind,

Or, this day four e'lights were m.rle: at '. hO, OT';, I "-, and
I,. 1535 hours. Plazforms were made at iower and upper cloud boundaries.



At 0740 at heights of 1OO aid 1.70 m (at t-ie .ower cloud boundary)

the aerologist noted moderate bumping of the P0-2 aircraft. The

turbulence coefficient was 12 m2is at 1l0 m and 15 m2/0 at 250 m

(Fig. ld). At remaining heights flight was calm.

By 1128 turbulence had strengthened. The turbulence coefficient

was considerable from the lower flight platform to the height of

the lower St boundary, which was at 450 m. At 100 m K was 16 m /s,

while at 300 m the value decreased to 11 m2 /s, and then increased

at the lower St boundary to 18 m2 /P. The vertical temperature

7radient in this layer varied from 0.33-0.78/100 m. The aerologist

also noted moderate bumping at three lower levels. Strengthening

of intensity of turbulence at the lower cloud boundary agrees well

with data from work [4].

q. At 1335 overloads of the aircraft were observed only in the

"-Corn of bursts, and it was not possible tc calculate the value

of the turbulence coefficient.

As a result of the foregoing the following preliminary

conclusions can be made.

The turbulence coefficient under anticyclonic conditions has

well-defined vertical profile. On it most frequently are noticeable

one or two maxima, t-he values of which are determined by conditions

* of thermal stratification of the atmosphere.

Values of the turbulence coefficient have daily variatiion.
Z~ Maxiimur of K is attained in the daytime hours at all heights

simull-neously, but the beginning of diurnal variations is most

clearly e^,ressed for the height of 100 m.
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THEORY OF SPATIAL-TEMrORAL CORRELATION
OF VELOCITIES IN AN ISOTROPIC

TURBULENT FLOW

V. I. Smirnov and B. Sh. Shapiro

Conditions of homogeneity and isotropy, and
also the hypothesis on quasi-normality of velocity
distribution are used for derivation of an equation
for the Eulerian two-,point space-time correlation
function in nonstationary turbulent flow, general-
izing equation the Chandrasekhar for stationary
turbulence. Sojution of the derived equation for
the last stage of degeneration of turbulence agrees
with results obtained by other authors. A method
of solving the Chandrasekhar equation by expanding
the solution in power series is developed.
Coefficients of the series are determined uniquely
if space and time correlation functions are given.
With rapid decrease of derivatives of the corre-
lation function with distance, it is sufficient
to assign the space correlation function. The
time microscale of correlation is determined by
the mean sqaare of velocity, kinematic viscosity,
and the space correlation function. There is a
class of universal solutions, i.e., solutions
not depending on viscosity and intensity of
turbulence. Certain solutions not depending on
the time interval are investigated.

1. Introduction

T-urbulent flow might be simultaneously uniform, isotropic,
and stationary (in a statistical sense) only in the presence within

it of corresponding sources of energy, rep1h. shing the decrease

of rnergy of turbulence due to its dissipatiton. The theory of

10
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turbulence is most simply built around the three above-mentioned

* conditions, and, bypassing the question of sources of energy,

around introduction of certain more or less formal assumptions.

In 1955-1956 Chandrasekhar offered the deductive theory of

tarbulence [9, 10], based on postulates of homogeneity, isotropy,

and stationarity, and also on the well-known hypothesis of

quasi-iiorm.ality (Millionshchikov hypothesis), asswciating correlation
'tensors of second and fourth ranks. On the basis of the Navier-

Stokes-equation for incompressible liquid Chandrasekhar derived a

nonlinear partial differential equation, containing only one unknown

scalar function, depending on space and time intervals. In view

of the assumed difficulty of solving this equation in the general

case, its author limited himself to finding a solution for the case

when viscosity does not play a role and can be considered equal

to zero, and arrived at the conclusion that theory does not contradict

the statements of the well-known Kolmogorov theory on the inertial

* interval.

In developing the Chandrasekhar method, S. Panchev derived

a dynamic equation for the space-time correlation function and an

equation for other correlation functions [11.]

Later A. i. Ivanovskiy and I. P. Mazin showed [2] that with

application of the above-mezi.ioned assumptions one more equation,

different from the Chandrasekhar equation can be obtained. The

form of the equation derived by Ivanov and Mazin was definitized

in -... work of V. I. Smirnov [51.

A check of the derivation of the Chandrasekhar equation,

expounded in work [9], shows that in compatations error in sign

is a:lowed, after correction of which instead of the Chandrasekhar

equation a pair of new equations is obtained. However, by mod-fl.ing

the derivation one can also obtain the Cr~andrasekhar equation.

it is shown below that rejection of the condition of stationariry

makes it possible to prove that this pair of new equations has

no meaning.

IiI



in this work the Chandrasekhar equation is generalized for the

case of nonstationary turbulence, solution of this equation for

the last stage of degeneration of turbulence is shown, and certain

solut.ons of the Chandrasekhar equation (for the case of stationary

turbulence) are obtained.
I

2. Euation DescribIng Nonstationary Turbulence

Rejecting the condition of stationarity, adopted by Chandrasekhar

[9], we will preserve conditions of homogeneity, isotropy, and

incompressibility of liquid. Derivation of the equation will be

a generalization of the ChAndrasekhar derivation [9]. Let us

introduce the following correlation tensors:

Sr,.,- •IJ ,12 W)j1. "i, W., e)-4 .

Pl- U, . e)IJ W. 'I.W(ro. W- at - -e.

4-- U, .'.U r"1 t(0,t)U t iaa

Here ' and e - radius vectors of two points in space; t' and t" -

two moments of time; ui - component of velocity vector along the

i-th axis of' the Cartesian coordinate system , in which ~=0;

p - pressure; p - density. Averaging is done by sets.

Because of isotropy and homogeneity, all correlation tensors
depend only on [---r', and also on t' and t" (on in-l'--'I in

the case of stationarity). In particular Q,1 and T1.% have the

fol.lowi.ng form [91:

Q- - (rq + 2Q) 4,1.

tam (2)

where r-V-l--; Q and T determining scalars of tensors QJ, ar.d T'.,

12



I
depending on r, t' and t"- Bi - Kronecker delta; primes near Q and

T signify differentiation with respect to r.

The basic statistical hypothesis will be formulated as

I which.is a Qj.- Mam QIQ, + Q,,Qik + QJ 0o o, A 1) Q , , (0, (3)

I which is a further generalization of the hypothesis adop-tted by

Chandrasekhar in work (9] and generalizing the Millionshchikov
hypothesis o

Let us consider the Navier-Stokes equation for the first point

S+ " " - ' 4 + • ; 4

We multiply (4) by a; and average for the set

•' •7 ~- 2Qj (5)

Here by V! is understood Turning in (5) to determining

scalars, we obtain the first equation for scalars

-0,p Q +(6)

where D - Laplacian in n-dimensional space in case of spherical

I symmetry, equal to

*D + (7)

in order to find the second equation for' ralar':, VI,: w;,ill

sl.arl. Prom the Navyer-Stokes equation I'or the :;e:nnd pi r.l. (r',t1):

4: ' 13
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We multiply (8) by a~u' and average. We then find

S• T~+X• - r•,,(9)

where we designatea

a " -a + (]o)

Tur~ning in (9) to determining scalars, we obtain the second

equation for scalars

where X - determining scalar of tensor X&,,.

As Chandrasekhar showed [9], from the hypothesis of form (5)
and condition of isotropy it foilowz that

(5 + - - 2 D.Q.(12)1

Generalization (3) in the case of nonstationarity does not hinder
the obtaining of equation (12), where the form of the last term of
Stie right side of (3), not depending on coordinates, does not play
a rcle, inasmuch as in derivation of (12) we encounter only

der.iva;.ive Q%6t with respect to 1, see (10).

it is easy to check for the existence of Iderit./

Sr 4D, r+ . (13)

Appl.ying cperator (L- taso (6) and considering (13), we
find



I I
n)( Q'- (- + .1)r n

- whence with the help of (12) we finally obtain

Odr) v Q /- 2 2- / t . (15)

We must emphasize that in this equation it is impossible to consider

= t", which follows from the derivation, see transition from (4)

to (5) and from (8) to (9). Owing to this it is impossible to
make the transition from (15) to the equation for Q(r, t, t),

derived by Pancher from the Xarman-Howard equation with the help
of the quasi-normality hypothesis [i1).

in the particular case of stationary turbulence scalars depend

only on r and m--i"-i'l, so that Le= __. tet us assume for

definitiveness that t(>I'; then • and (15) becomes the

Chandrasekhar equation for Q(r, t):

Q (-2Q-DQ.6)

Thus for Q we obtain a unique equation (not counting the equatior.L

obtained by the other method, see below), when under the assumption

of stat.% 'ity there car. be obtained, besides equation (16), an

a, dij i. pair of equatiorns

'• W vOs) QU 2Q± DQ, (t)

if during derivation of the second equation for scalars we start

with the Navier-Stokes equation for the first point (r', t').

Incidentally, it is exactly in this way that Chandra3ekhar proceeds,
but he allows error in sign (equality (23) in work [9)) and therefore

arrives .. t equation (16). With nonstationarity it is urposS,•- .le to

start both -times from the first point, since we i.t-n o ir

", ~11
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particular, different correlation tenscr; usu1 and uau;:t with

different determining scalars. Thus it is impossible here to obtain

a nonstationary equation wnich would become (17) in the case of

statCIcnarity. Consequently, the pair of equations (17) is excluded.

if, in contrast to (4), we start from the second point, we again

obtain equation (15) for the nonstationary case and equation (16)

for the stationary.

As was shown by Ivanovskiy and Mazin [21, and also by Smirnov [51,

assumptions of homogeneity, isotropy, and stationarity permit obtaining

one more equation, different from equation (16). Again rejecting the
condition of stationarity, we leave on the left in equations (4) and

•8) only the partial ;4erivative with respect to time, multiply le;'t

and right sides and ar-rage:

.t~. (18)

where t' X t", as in (15), and i -- is a function whose expression

through Q has not yet been found. However, in the particular case

of strongly degenerated turbulence, when in equations (4) and (5)

Sit is possible to reject nonlinear members, the form of * is easy

* to find

2DgQ. (19),

- i'vanovskiy and Mazin consider [2] that nonlinear members can

be rejected and for stationary turbulence also, if we limit ourselves

to the viscous subdomain, where Re<'l. We then obtain [•]

*+ (20))Q 0

which differs from (16) if we reject the noniLrnear right par%.

Apparently, requirements of homogeneity and Isotropy, together with.

the hypothesis of quasi-normality, are not so strong as to make it

possible to derive a unique equation.
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i 1 It is possible to doubt the legality of reJection of nonlinear

members during derivation of equazior (n0), inasLmuch as stationary,

undamped turbulence exists as a result of nonlinear energy transfer

from bigger vortexes to smaller. Therefore it would be desirable to

obtain full nonlinear equation (18) and to study its solutions. Until

this is done there is no possibility of selecting some one of the

two equations (15) and (18) and stating that it, indeed, describes

the structure of turbulent flow.

It is easily confirmed that equations (15) and (19) correctly
describe the final period of degeneration of turbulence. If it is

considered that at initial moment of' time

Q(r, 0, 0)- constexp(-.!-), (21)

Then function

I~ nst___ I (22'p
£~;i~)co~st[9 ± 4vex [ 4+4 ' + -r) (22 )

satisfies, which is checked directly, both equation (15) with

zero in the right part and equation (19). Solution of equation (22)

for t = t' = t" becomes solution Q(r, t, t), found by

L. G. Loytsyanskiy [31 for t-co, when the form of initial condition
(21) does not play a role

Q(r, 9, I)-consti-.0exp

and also solution of the K•rMrnn-iH-oward with initial condition (21),
found by Batchelor and Townsend [8).

Below will be examined certain solutions of the Chandrasekhar (1E).

17



3, Solution of the Chandrasekhar Equation Depending
on Time

;et us examinne equation (!6). It is convenient to introduce

dimensionless longitudinal correlati.on function f(r, t). By

definition

(24)

Substituting (24) in (16), we obtain an equation for f

F/

Function f(r, t) should be an even function of r and t owing

to conditions of isotropy and stationarity [7). Let us assume that

f(r, t) can be represented in the form of a power series

( (r,. 1) aj'i: (26)
1-01 &ý,O,

Putting this series in equation (16), we find

A (2 - I)a)- 2, a i (i- (i.-2)(40 + 8i + 3)a, X"

,I (I - 1)(,3) -

Xrib Yt2 i, - (a--)(2!+3)a,a,'r 2÷ . (27)

We divide this equation by r, make linear transformation of

indices of summation in such a way that summation starts each e

from the zero index, and equate coefficients of members with identicel

pcwers of r and t. Then we obtain.

- -- t [t+ I (i + 3) (! + 2) X
+ i)(k +2 + 1)

= X (i + l) (4i + 32i + 63) a,..,, + 2 p+2)X

1-3



.. v.
i

l it!
whe re i, > O.

Let us write out the matrix of coefficients a,,:

a"la aan• ... a%---

anq., Ian.... . (29)

Accoi-ding to (28), coefficients with value of second (temporal)

index >I depend on a finite number of coefficients with lower value

of second index, i.e., each column of matrix (29), in addi-ion to

elements of the first line, is a function of elements of columns to

the left of the examined column, and also of elements of the first

line. Consequently, if we assign all elements of form a,. aw, (i, k>O),

then by formula (28) all coefficients amare uniquely determined.

In other words, the Chandrasekhar equation (25) uniquely determines

the space-time correlation function f(r, t), if space f(r, 0)

and time f(O, t) correlation function are given.

If functions f(r, 0), f(O, t) are assigned graphically, they

carn be approximated by power series, and we can thereby determine

some quantity of first coefficients ap,*,• If K's of first

coefficients a0e. are givenj 2K coefficients a,., are necessary in

order to determine all aa, to the left of straight line

in (29).

in the particular case of k = 0 (second column of (29)) we

find frovi (28):

a:.,., -- Q + .1) Vi + 2) (i + 11 (.40 +32i + 63) X

X + ;2 1 (p + 2) (p + 1) (2p + 7)÷.0 *,-..(.

19



i.e., all elements of: form ,., with the exception of _;,, are determined

only by elements of form op. Where i = O'we have the simple formula

4-14 (-eo + 54,'3) (31)

experimental check of which would be interesting.

With sufficiently rapid decrease of derivatives f(r, t)

* with distance for unique determination of f(r, t) one longitudinal

space correlation function f(r, 0) is sufficient.

If the following condition is met

S(32)

which seems natural, one can determine all coefficients of expansion

of 1(96 i.e., the function f(O, t). Integrating (25) with
.: • respect to r. we find

A .-

I~~~e O~'o..D~'sde] (33)

where

A If we substitute in (33) f(r, t) in form (26), then,

"- I j besides (28), we obtain

"" •. k:O. (35)

These formulas together w:ith (28) make it possible to success-

' ively determine all aw h•O. Actually % equals

(36)

ii -

iP _i_- a-_..



f(37)j

-I For Ck it is easy to obtain the formula
tk

S.4 ( + £E(0+ ) (i +2)( 2d+7)a,+,.,a,,..,-+,+dr. (I8)
I

I As vs shown above., from the first column of the matrix of

coefficients (29) we can determine the second. Further, with the
Shelp of (28) from elements of the second column we determinie all

elements of the third but aw. The as elements wie find from (35),

inasmuch as element ft has been found, while C1 can be found from

* (38), since in the right part of (38) are only elements of form 4k,

0= .1, which have already been determined. Anal6gously we find

elements of the fourth column from elements of the third, etc.

Let us consider formula (36) If f(r, 0) and ,i (36) determines

the Eulerian temporal microscale of turbulence T., equal to

(39)- .(S

* Since as, obviously, we must have a,<,0. from (36) we obtain the

lower limit of energy of stationary turbulent flow;

( i••,•.(L•o)

Ce

.:pzjerimental check of formulas (36)-and (40) is, from our point of

vi.ew, of' great Interest.

SLet us consider the example when f(r, 0) has the form

(4i)
fAr, 0)- •

We easily find that

21
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Tfen f 6m (36) and (39) we obtain

~ 'fr (42)

As appraisals founded on experimental data for turbulence with

large values of Re show, usually (6)

9 9-MV(413)

where e is -rate of dissipation of energy of flow. Here we use the

well-known expression for 4 (7]
S(44)

Then from (42) we obtain

3~ B. (45)

Let us note that in examined example formula (40) is satisfied

according to (43).

baIt is.known tha.t correlation function f(r, 0) is poorly described

by a formula of form (41), :so that relationships (42) and (45) have

to be very approximate. On the other hand, from the expression for

Co (37) it follows that C0 is determined basically by small distances,

whiere f(r, 0) and its derivatives are not very small. Therefore,
r~ !

ther, is reason to think that (42) and (45) correctly ,ire t he order

o Vf magnitude of -T. In the theory of turbulent coagalatior, of

aerosols is obtained the formula (6)

S35. (46)

Possibly, the u.e for f(r, 0) of a more exact expression than

(41) would allow us to achieve better agreement of both formulas,

or even make is possible to definitize (46.

Ii 22
SiI __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _



',7-~ -,V.-_ -7

-10

When e = 10 cm 2/s3 and v - 0.14 cm /s, we find from (45)

0 0.37 S. which is realistic.

We showed that during fulfillment of condition (32) t~he,

- iChandrasekhar equation (25) for space-time correlation function

f(r, t) has unique solution in the class of functions expandable -in

power series I.n even degrees of r and t, completely determined: by

assignment of space correlation function f(r, 0). Solution of I
r (r, t) can be found by the formulas derived above-. The form ofmii
f(r, 0) should be determined independently either from theory or

ifrom experiment. Furthermore, the mean square of the velocity

component as and kinematic viscosity v have to be known.

Thus the Chandrasekhar equation is compatible with the well-known

Kolmogorov theory, or in general with any theory giving f(r, 0), if,

of course, it does not contain propositions contradicting conditions
of homogeneity, isotrop, and stationarity, or the hypothesis on

quasi-normality of velocity distribution.

Certain theoretical results show that the hypothesis of quasi-

normality cannot be fulfilled exactly (see, for example, work [4]).

However, it would hardly be correct to interpret such results- as

proof of the total unfoundedness of any derivation obtained- through

the use of this hypothesis. It is known that the system of equations

for correlation functions is infinite; so that in any conceivable

theory of turbulence it will be necessary to adopt some or other

hypotheses in order to be limited to a finite number of equations,

and it is fully possible that any of these hypotheses will lead to

more or less considerable contradictions and noncorrespondences.

4f. Universal Solutions of the Chandrasekhar Equation

Let us examine a special famidy of solutions of the Chandraseknar

equation for which we will turn in equation (25) to dimensionless

variables

(4f7)
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where the coefficient 2 is introduced for considerations of

convenience, mentioned below, see formulas (102) and (103). Then

we have, assuming that f depends on p and r,

This equation does not include quantities v and , characterz-

ing liquid and turbulence. Therefore under corresponding boundary
conditions it gives universal solutions. Instead of (28) we obtain

2

:n O+X-00(+ 32i+631 +)(2+I+I) I +)(• _+ ,_q]q2. (49)

{Ii' where *, - coefficients in expression

I If a condition analogous to (32) is met, relationships of type

(35) .and (36) apply, wheTe the latter has the form

INN (51)

However, universal solutions contradict the Kolmogorov theoryI actually from comparison of (50) and (44) we easily find

S_,(52)

i where 2j* is a dimensionless quantity, while from the Kolmogorov

theory it follows that

- ~'(L) 2 ~.(53)

where L - magnitude of large-scale vortexes. Apparent-ly, .rsal

solutions are of -ittle Interest from a ph.7.•,I. srandpoi.'t

24
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..
5. Solutiorie not Depending on Time Intervalf

Equation (25) also has solution not depending on time interval,
the study of which is of certain, basically met. odical, interest.

I Let us record stationary equation (25) in the form

'A~ -OP I -'!,D31. (54)
A4h

Representing f(r) in the form of a series
mm

•mf (r)- ,e do-i
S(55)

we find

ii+3 -(- -,--(56)Ji (I + 3-)Q + 2)(Q +I)114P + 321 + 63)

i where i > 0. If a, and a- are assigned, forrula (56) permits finding

all other a., k > 3.

If conditions (32) is met, witn the help of formula (35), where

* we consider a,.,+g--O. we can determine a 2 ,

, •-•,(5?7)

so that only a1 is arbitrary.

Equation (44) also has a particular solution of special kind.

In order to find it we will start with equation (25), containing time.

d Let us integrate both parts of equation (25) from r to and

assume that (32) is satisfied. We then obtain:

. (I--D i-- -. i flr', *) -Jl,', Od). (58)

We will represent solution of equation (58) in the form

25



f(r, t (r, Q+ 2g(r, ), (59)

where f 0 satisfies equation0!

(60)

with boundary condition

M/,r. O) -of (r. o). (1

and g satisfies equation

-- -- A1 g f (r'. t) -D. (r'. (62)

with boundary condition

S•SO, O) •- 0. (63)

Let us find the solution for (60), using apparatus of the 6-
function theory, described in work [1], similarly to the way in which

this is done in work [2]. Let us represent fo in the form

re (r. 9)--fl(r. O) + (er, 1), (64 )

where t sattsfies equation

A. -,'OI - ,,•,(r, 0)S~(65)

with boundary condition

y(r, 0)-- 0. (66)

The solution of (r-5) is pr'esented in the fo•rr

26
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Here G - Green's function, dvt - element of volume hli five-dimensional

space

d d-rI* sitZ sinO T sin edde dX JV Adpd.h(68)

where r' -"distance to origin of coordinates," and X, Y, C Pnd

"angles" formed by radius vector with coordinate axes [11, 1 te .'atior: r

is carried out over the entire infinite "space."

G.-een's function sati. ies equation [1].

using i7hich, we easily obtain form (67)

t-W. 1fm 0) Odv1' -f (r. 0). (70)

then from (64) we have

Sp.1•.0 a) -'-.[ (60, ool- , 9e•W."-ti

The singular part of Greei"s function is equal to

CI' xL a id iJ~d -.._,, .,; .... . j. (.
r[6 Sinr sin, sin 0

-VA' (72)

Let us assume thoot Green's function G is different. f'rom 0 only
when t > 0. Therefire we will assume

0: 0)or +)• ,r.20, (r, 1); 1 >o
"90; g<0" (73)
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As a result we find for t > 0

" r e dx 7-e - (74)

Ccnditicn (73) together with the condition of parity of fo and
S 'ith respect to t mean that the sought solution of f(r, t) does not
have to depend on t. Below we will confirm that this is indeel the
case.

Let us represent f(x*, 0) in the form

The serie• 2onta is Only even degrees of r owing to isotropy [7] and
is a3sumed uniformly convergent everywhere.

We rewrite (71) in the form

- 0,r. -- O)K(r'. r)dr', (76)

where K is foiand after integration with respect to angles

Kxa, ' [ -Q.-dt- eFdt) +
• :• •:;~~,'rk" " '.€ "

0 + +

Ir (7;)r wn e

where

"(78)

" * : integrating in (76),. we find

;" f 28
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Ii
os= j4P(2Y,+~a( Nit* )"

-++ V'U 2+ __ 4+6 (79)

where e0 -- integration constant, proportional to p", and U& (r.p) -

functions; equal to

_-r jeV"4aV + f- e)'"-'-i dr. (80)

Integration gives

L 02 1I
U~~jn '.dc2 iTa

1(81)

Substituting (81) in (79), we find an expression for f0 in the form

of a series, the structural rul1e for which can De seen if we write

out several of the first members:

M )I 1),, + 2-+)+

---. + 2.24+ + -3"+ +3 + +
+ 4 I!T + 6..e1 t. 1 -,, +941r 1# + e) -

-222o, 4.2.2-2V 2.2p 2: (82)

The coefficlent before the term with ordinal number i in parentheses,

ahead of which stands coefficient a, is equal to the binomial

coefficient G,

"Let us r6turn to expres3ion (59) for solution of the

Chendraoekhar equation (25). We will look for g(r, t) from (62) by

.-- the method of successive approxitx..ýons, substituting instead of

: f(r*, t) a series w'th vrsk-hoin coeffi,.ci..::t-

where 41(, ,2) - is an even function of t and r. Parity of function

S(r, t) ,"ith respect to t follows from szationarity [7]

,1"



ILet us examine a certain approximation, for which

(84)

TIf coefficients ce are known, then g(r, t) can be recorded in the

form

XO(lr'-rl. It'--lj)dv'dr', (85)

where G -- Green's function (74). Let us replace variables

Xffe I~e]Oj'r- ?j, $)&dVal.

Assuming that series (84) can be differentiated and integrated

term-by-term, we find:

f f(r. O) -Df(r, 0)dr= C(0)- f/(r. 0) Djf(r. 0)dr
& dr d

"2.2 ., 3)2 -)Ccr k2-8

I Ell 2k+2m-2 (87)

",vhere

C (l0)=f (r, 0) Daf(r. ) dr E C, OP,.
O DP-0 (88)

wnere coefficients Cp are still unknown.

Let us finr auxiliary function W(r, e)

W 0) f D.,,/lr, 6) drjX(r'. r' r~dr. (,;

30



Knowing W(r, 0), we can find g(r, t) by the formula

12I (90)
At 0

4jzv V o 0 s 2

Substituting f(r, t) here from (84), we find

w +r, 02YV) 6v] 1 ' + "!J (q(1) +

* h-2 1~ rn- n-U(91)k.-2 1,0 N,-O R-0

Here

2(2k1+ 3)12k-2) ,P+21 x

24+2m-
,, 2U.26+.:,++ + 2• + I

I2 U~+2 (92)
- - •u .+,,

where function U k(r, $) is determined by (80), and

D(C) 11m
~-- - 2 -- 0,,-

X* ~ ~ ~ ~ h' 2k2 a)k 2 " r'+' a-U2(2k {2h1.4- 2 1 - r2(•,, A+2) (93)

It. is easy to verify that the last expression equals

-jjfQ, S)~ D f (r', O) de )rdr - Dp (914)

It is possible to record Pa, in the form

a I

where

I31= I

-! ~51



- (2k + +2,.-a. + i__ ++2

=z-2 Q2U (2 2a FO

i;;U•+ - F3-1 J(96)

We will first determine members of the sum from (87), enclosing

members with the same highest degree of B in parentheses

+(P,+: a.+a,,,,OP w+,ao,)+..-w+ (P4M + PU1, + Pme + Psi" + PWI) +
+ (ROM + P4,, + PUM + P2M + P31N + PM) +..

-(a*Q 2 ) + (a,*Q, + 2•o,,Q2 ) +
+ (q,,Q, + a*,Q,, + 4LQ2 + a2,6Q 2 + a,,AQU) +

+ (SNQM + a0Q,,Q + a=Q=,+,+ + a- + ,, + aa,,PQ3,) +

[9-2 271 2
+ ... -aa•aI + )Q. +(a+A,)V. , +S+ + 4-:•3=,•, + .-•., iv, + ýL,,,, .+,,,oQ, +

L 3-1 3- 4  1  /-M 5.31!• . i-- 'T4:n3 _ 9.2 2.7a...1 ,.

+[a+:s~+j ~ +m. (97)
+ (OU• + 43AJ 12Q)01

where Q26(• ,)•• +.. (j 97 r

I:-+2-2

6V xQ"~ 5 -9 + 3-L*-*+ 3-L- +r')
____ _ _ -(11 7.9,11.u 9.),-0

Q* +4.7.+.6. +1-+r+ +4- (98)

Let us note that expressions in parentheses in (98) and (82)

accurately coi.ncide, as it should be according to (79) and (96).
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I ' I
SA We substitute (97) in (91), then substitute the obtained

! I expression for W(r, 8) in (90). After integration and substitution of
g(r, t) and f 0 (r, t) from (81) in (63)

j f ~ I( .- f(r, 0) + 24 (1 *.a,, + 2.7a.4 + 3.9.ar 4 +

I + 4.lla/ + 5.13.as + ...) +

+ 4vei (1.5.7.an + 3.79ga' + 6.9.11400 + 1Oll13a/ + ... )+
S+' .. r + +LSt + .-j -Aig-AL +•• +

30 to V

From the condition of stationarity of turbulence it follows that

odd degrees of t have to drop from f(r, t), see (83), where this

requirement satisfies each of the approximations (see (84)). Equating

coefficients of members containing t to zero, we find

at*-- z--.

%- '.2.7.-* ; 1--0
-2.3.,9

"2-4-11-0 3-92 /X100)

._ b- a+ 3.9.2 a + 2.7.1 2

2.5.130 4' 441130

_m- ;• : +.

age b. X- A'

2 p(2m + 3) P-4)p~2a+ 3) (p-i)

It is easy to verify that the formulas of (100), starting from

expreosion for a30, are equivalent to (56), and that the formula for

a 2 0 coincides with (57).

If expressions for ak0 are substituted in (99), it will appear
that all coefficients on members containing t 2 , turn into zero, and
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thus, expansion of f(r, t) in series in degrees of t has the form

f(r, O--fi(rO)+ 0(A).

Examining ,100, one readily sees that all coefficients a
ak

are propo6rtional to

2-- " •(102)

Relationships of (100) constitute recursion formulas where the

last -oefoficient is cbtained as the sum preceding products, plotted

in acccrdance with difined rule. It 13 easy to see that the factor

enters in expression for ak. in degree k. Consequently, series (75)

can be rewritten in simpler form by introducing instead of r the

dimensionless coordinate

(103)

what corresponds to (36). Then instead of (65) we have

f( .O y . o) +,t,+i + . .z+ -- , - (104)

where coefficients a are determined from recursion formulas:

$-- - , € -.
145 3'

3-90

*.k •. 2. 7"1,(0~

4-11+3 3-.

..... .... .......
6 2+3)(
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SExpr-ssons for 6 0 and a0 can be found by switching from r top in formulas (88) and (94):

14 (107)
I j

Introducing dimensionless time T according to (47), we can

record (58) in dimensionless variables:

DP(P

From (106), with the help of (108), we find a simpler expression

than (106)

%m (109)

where the following relationship was used

-- .. (110)

following from (101).

With the help of (110) It is easy to show that f(p, T), in

general, does not depend on T. Actually, by differentiating (108)

twice with respect to T, we find

1M- , _-...-t0 (iii)

i.e.,

I =. f) .-I(.. o). (112)

Relationships (105), (107), and (109) make it poszible to find

Sall coefficients ak, inasmuch as ý and n, completely determIning a ,

* k5



are themselves determined by all a The value of a should decrease

rapidly with increase of k, so that it is sufficient to know a

certain quantity of first ak for a given degree of accuracy in

determination of a and f(p, 0).

Coefficients a were calculated on the "Minsk-l"t computer. In

integrals (106.) and (109) instead of - a certain p., was selected

which then was increased gradually.

(0) (0)We selected ( and n arbitrarily and then in first

approximation obtained )(p), •I)(p), etc., until in a certain n-th

approximation changes of t and n become negligibly small (with accuracy

to the fourth significant digit). When pr = 3.5 and 4 process

converge4, and when p > 4.5 the convergence interval decreased so

much that for . and n found from extrapolation of curves (1,; and nd

(see Fig. 1) divergence of the iterative process was observed so that
(0) (0

it was necessary to select such a c and n(0) pair for which

divergence was the slowest. Figure 1 shows how stabilization of

eh and n occurred with growth of p

The most probable value of 4 and riare c 0.33585 and

=-0.041154, with accuracy to 2-37 units of the fourth digit. With

growth of p-the number of N of coefficients rý. necessary

for finding and n~ with an accuracy to one unit of the'
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fourth digit increases sharply. With pm = 5.95 are N = 700 was
required. Further increase of pm turned out .to be impossible in

connection with the limited capacity of the fast store of the

machine (2048 numbers) and increase of computation time. For

obtaining 4 and n from values of the preceding approximation two
hours of continuous n-chine operation were required.

From the found final values of • = 0.3585 and A = -0.04154

a graph of f(p, 0) was plotted, see Fig. 2. From the graph It is
clear that f(p, 0) intersects the axis of abscissas when p \ 6.

Values 6f f(p, 0) for • = 0.3585 and n = -0.041557 differ from the
above-mentioned by less than on 0.001 with p < 6, which permits
judging the accuracy of plotting of the graph. In Fig. 2 i1.
also given a graph of function exp(-alp2) for al = 0.07170. It is
clear that up to p = 5 both curves almost coincide, so that decrease
of f(p, 0" turns out to be very rapid. The found solution is checked
by direct substitution of f(p, 0) in the form of a series in equation

(108), for p = 1.

i "

Fig. 2.

The obtained solution for f(p, 0) is interesting basically from

methodical stand point, Most interesting is the quite rapid
convergence of the series representing the solution, which permits
v-lying on analogous convergence of series giv.ing both time-1.3idependent

avd tlme-depencdent -olutions. Greenls "uncticn for the linear part

.7



of the Chandrasekhar equation (25), used during the finding of f(p, 0)
can be useful during more detailed investigation of this equation.

6. Conclusions

The conducted investigation lead to the following results.

I) A dynamic equation was derived for determining of the

scalar of correlation tensors describing two-point space-time
correlation of velocities of turbulent flow and being a generalization
of the Chandrasekhar equation for stationary turbulence. During
derivation we adopted conditions of homogeneity and isotropy, and

also the generalized hypothesis on quasi-normality of velocity
distribution.

2) During direct derivation of the stationary equation a pair
of equations not noticed by Chandrasekhar is obtained. However, these

equations one should be rejected, inasmuch as it is impossible to

obtain them from the more general nonstationary equation.

3) In principle it is possible to obtain one more equation for
nonstationary turbulence, which has not yet been investigated.

4) The generalized Chandrasekhar equation correctly describes

the last stage of degeneration of turbulence.

7) The -hnand-'asekhar equatlon (stationary) for the space-tlme

i+,rZi....,Ll correliation function can be solved by way of the
-:n'tation of solution in the form of a power series. The ;outiýcn

is ut.ique if one assigns purely spatial ana tomporarl correlationr

functions, which can be determined by another theory by experiment.

6) If a certain xnown combination of _,4ptial cerivatIves of

t. ,.orrelation ;'u:.Ltion turns to zero at *n*nity, for unique

z.:,'on of the Chandrasekhar equation it :s :'iuf-.71clen V Uzalrr. t.n

co.-rat6x j:%nrc ion. Here the EiAlor .;., . ' .
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of turbulence tumjs out to be a f-unation of the mean square of

velocity, kinematic v. .cosity, and the integral of known form from the

space correlation function.

"7) The Chandrasekhar equation has a class of solutions, the

form of which is universal, i.e., does not depend on the properties of

liquid and intensity of turbulence. These solutions do not agree
4

with the formula for the mean square of velocity of turbulent flow,
knowhl from the Kolmogorov theory.

8) We investigated solutions of the stationary equation

not depending on time interval, and in particular, one singular

-solution, determined with the help of Green's funcuion,

in conclusion we must pcint out that results of ifhis work

can be used during derivation arnd solution of equations for other

space-time correlation functions in turbulent flow.

The authors thank A. I. Ivanovskiy for userul oriticism and

Yu. V. Sidorov for discussion of a number of questions of mathematical

character.
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1 ~TUR~BULENCE SPECTRUM OF A STABLY \
i I STRATIFIED ATMOSPHEPE \

b G.e. F S huln

tiResults ofo experimental i nvestigations c i
rl the turbulence spectrum in the stratosphere and

Supper troposphere, where tpcmperature stratfi-i cation is stable, are examined a diagram of

d o the generalized turbulence spectrum, including
f pthe buoyancy subdomain is offered. Particular

F cases of spectra with limited band of wave numbers,
n c including the spectrum of "quasi-wavelp dnstur-
tb bances are examined. For a physical interpre-

m tation of energy wran3itions in the spectrum
w curves crteof) are used.

i I. Introduction

Turbulence in the free atmosphere is the phenomenon determining

f in many respects the physics of' processes ocuring in it. Furthermore,K study of atmospheric turbulence is necessary for solution of a whole
! series of purely applied problems of dynamics of flight and aircraft,
i of propagation and scattering of purities in the atmosphere, etc.

SFree atmc~§rhere is usually stratified stably in density, which

! noticeably affects the character of a~earance and development of

i turbulence in it. The question of appearance of turbulence in a1: thermally stratified medium was solved theoretically by Richardson,
S * who gave the criterion of' growth and decrease of turbulent energy:

i turbu2.ence increases when R. < 1 it is not changed when Ri = !., and it

!! f::des whenf R. > 1, where

UI
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Here from equation (1) it is clear that Richardson considered

Soth tetermal and dynamic stratification. However, for steady

turbulence, Ri, i.e., the Richardson number, does not permit estimating

the intensity of' turbulence and, this is especially important, gives

no information about scales of turbulent motion.

Since turbulence is characterized by field of random velociting,

for description of the field of turbulence statistical characteristics
• are used. One of' such characteris ics, allowing us to obtain

information on the intensity of t, )ulent motion of different scales,
is the spectral density of energy distribution of Lurbulent motion,

or the energy spectrum of turbulence

(a)= (2)

* where Z-•. 2 - scale of motion, v - vorticity of corresponding scale.

- For locally-isotropic uniform t.urbulence Kolmogorov and

Obukhov, proceeding from considerations of self-similarity and assuming

that energy is transmitted from larger scales to smaller without

losses, obtained an expression, which is spectral form is known as

S the "-5/3" law

2i'[S(U) 0#TP."70 (3)

where e Is the rate of energy transfer over the -ipectra, numberically

equa2 to the rate of dissipation of turbulent energy as heat. As can

~ . be seen from expression (3), e also characterizes the intensity of

I turbuience.

"" ! We will assume that in turbulent atmospnere, even if we .oiae

no limitations on spatial structure and distribution of turbulent

formation (i.e., also in the case of anisotropic and nonuniformI

S tu-.bulence), energy transfer from larger scales to smaller takes
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place. In the language of spectral concepts this means that energy

flux in the spectrum is directed toward greater wave numbers. Hence

follows directly determination of the rate of energy transfer in a

* spectrum %, as a function of wave number . In particlar case (3)

* tg-nI const. Here, as already indicated, in a certain interval of

wave numbers energy does not enter and is not expended, but is only

transferred from some movements to others. In Fig. la in coordinates

S S(t)and 2 are depicted e = const lines, where eI < E2 < 63" If the

spectrum of turbulence is in parallel with these lines, it means that

the "-5/3" law (segment BC) is valid. If, however, the spectral

curve with increase of wave number passes from one c to another

(segment AB), it means that in a certain interval of wave numbers

energy enters spectrum and, conversely, in the interval c-orresponding

to segment CD kinetic energy of turbulent pulsations does not pass

SI completely into energy of pulsations of smaller scales. In other

' 1 words, in region A B the source acts, but in region C1 the consumer

of energy of turbulent pulsations is active.

I ~a) (jI) b)

Fig. 1. Spectral density of the
energy of turbulent pulsations and
the rate of energy transfer over
the spectrum.

A very convenient form of representation of experimental data in

those cases when we want to trace transfer of energy in the turbulence

spectrum is a graph of function%-", presented in Fig. lb. On

such a graph it is possible to separate distinctly both regions of

entry of energy into spectrum and regions where enegry is "sucked"

from the spectrum.
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iI. Turbulence Developed in Stably
Stratified Atmosphere

Stable stratification of medium prevents the appearance in it

of oscillations whatever. If, however, in such medium chaotic

turbulent movements nevertheless appear, tnen, according to the

Richardson number, this means that the dynamic factor (in the opinion

of Richardson this factor is the vertical velocity gradient)

predominates over thermal stability. However, the influence of

Archimedian forces is not limited by the fact that they prevent the

"the appearance of turbulence. In well-developed turbulent flow

Archimedian forces influence the character of the turbulence spectru:n.

The range of wave numbers (scales) in which this influence is

significant is called the subdomain of buoyancy. Vortices in tnrs

region during their lifetime must accomplish work against the

Arch.4median forces, on which they expend part of their kinetic energy,

i.e., forces of negative buoyancy are the consumer of turbulent

energy here. As was indicated above, a. drops with increase of 2,

and the spectral curve has slope greater than 5/3.

First experimental data confirming the presence in the

turbulence spectrum of an interval of wave numbers in which the forces

iý b 6"1 uoyancy appear were obtained in 1959-1960 [3), [L].

Analyzing results of radio experiments, Bolgiano [4] offered

a certain theoretical model of the spectrum of turbulence in the

buoyancy interval. Assuming that in a defined range of wave numbers

significant influence on the form of the spectrum is rendered by the

ratp of dissipation of mean square fluctuations of specific forces of

"buoyancy, Bolgiano drew a conclusion to the effect that in the

* interval of buoyancy the slope of the spectral curve remains cor.stant

but different from 5/3. He obtained expressions for spectra of

pulsations of velocity and temperature

S,() (4)

S ((2)5 CC )
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where S,(2) - energy spectrum of velocities of turbulent pulsations,

- energy spectrum of pulsations of temperature. During the

analysis of results of experimental investigations of the spectrum of

the vertical component of turbulent pulsations of velocity, which were

conducted at TsAO in 1959-1960, it was found that in the interval of

wave numbers corresponding to scales of from hundreds of meters to two

or three kilometers the experimental curve has slope considt.rably

greater than 5/3 (see article [3)).

Investigations were made with help of a flying laboratory in

the upper troposphere basically in clear sky. Zones of intense

turbulence in jet streams were inspected. Thermal stratification of

the atmosphere at these heights was stable.

In work [31 an expression was offered for the turbulence

spectrum, agreeing well with experimental data

2 S 4

S3 3q(6)

where $W) - energy spectrum of vertical pulsations velocity, e -
rate of dissipation of turbulent energy as heat, b - coefficient,

depending on gradient of potential temperature, i.e., on the degree

of thermal stability of the atmosphere.

Expression (6) was obtained from the assumption that the rate of

conversion of energy in the subdomain of buoyancy depends on the wave

number and is determined by the average gradient of buoyancy forces.

As was shown in the cited work, expression (6) is not strict. The

problem of the turbulence spectrum was more strictly theoretically

solved by Lumley [6]. He started from the same considerations on

dependece of the rate of transfer of energy in the spectrum on the

gradient of buoyancy forces, as in artizle [33, and obtained the

expression:

S.m - 2TQ 71

L
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where L0, is wave rumber, characterizing the subdomain of buoyancy.

Expression (7) coincides completely with expression (6). Thus it is

possible to consider experimentally and theoretically established the

presen;e in the spectrum of developed turbulence during stable

stratification of the atmosphere of a subdomain of buoyancy, which is

characterized by the slope of the spectral curve greater than 5/3. j

The distinction between expression (4) on the one hand and (6)

and (7) on the other is reduced, as a rule, to distinction in the value

of the exponent on ! in the subdomain of buoyancy, so that in the first

case the slope of the spectral curve is constant, while in the second

it is a function of wave number.

In recent years in TsAO much experimental data, obtained und:cr

conditions when it was possible to expect the presence of the subdomain

of buoyancy in the turbulence spectrum, has been accumulated. In

Fig. 2 are presented curve of e., obtained in 1965 during flights

the flying laboratory in clear sky. Curves 1 and 2 were obtained

for the horizontal component. Horizontal fluctuations flow velocity

were measured in the region of large scales by a Doppler system [2]

and in the region of small scales by an aircraft hot-wire anemometer

0'0

*J

0 Fig. 2. Experimental curves
- a=-f(ft; 1 and 2 - for horizontal

and 3 - for vertical components.
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-~I
I Curve 3 was obtained for the vertical component according to

measurements of vertical overload of the center of gravity of the

aircraft, with account being taken of its transfer function. The
curve liec considerably higher than 1 and 2, since it corresponds to

the presence of intense bumping of the aircraft, i.e., to considerably

higher energy of turbulent motion.

The curves in Fig. 2 were obtained during stable temperature
stratification, and on them is seen distinctly a region of decrease

of CO (subdomain of buoyancy). It is interesting to note that for
greater intensities of turbulence this region shifts in the direction

* of greater wave numbers.

Experimental investigations of atmospheric turbulence widly

developed during recent years made it possible to accumulate a large

quantity of data on the structure of the field of turbulence. It is
obvious that every method permits obtaining the spectrum of turbulence
in only a defined interval of scales, but at present our conce•, of

Sthe spectrum of turbulence of free atmosphere fro= scales equal to

tens of kilometers to submolecular scales, where kinetdc energy of

turbulent pulsations passes to kinetic energy of moLecuilea, I.e- to

heat, has become complicated. In Fig. 3 is represented shematicaz.!y

I the energy spectrum of turbulence of stably stratif~.ed 2_wmosphere.

Fig. 3. Generalized
curves of s(a) and .,

for stably stratified
" "atmosphere.I

SI :,I/0 1



Region I is the region of scales in which primary turbulent

formations appear. Average motion in these scales loses its stability,

and part of the energy of basic flow goes to formation of disordered

fluct ,ations. Region I is characterized by growth of e. This does

not mean that only this region receives turbulent energy. The

increase of c makes it possible to conclude only that entry of

energy into the spectrum is faster than the draining off (consumption)

of this energy. We will not stop here on consideration of possible

mechanisms of generation of turbulent energy in region I. This

question is very complex and is still far from being fully studied.

Region II is characterized by quasi-equilibrium between entry

of energy into the spectrum and loss of this energy. As can be seen

from the figure, the rate of energy transfer over the spectum el.,

in this region remains almost constant.

The following region III - subdomain of buoyancy - is

characterized by the fact that at wave numbers 2,--2. acts a powerful

consumer of turbulent energy while entry of energy into the spectrum

from without on these scales is practically lacking. Owing to

loss of energy on work against forces of buoyancy, the rate of energy

transfer over the spectrum in this subdomain drops.

Region IV is the classical inertial interval. Here there is

"neither influx or loss of energy. The rate of transfer of energy

over the spectrum in inertial interval is constant and is equal to

the rate at which turbulent energy passes over the right boundary of

the inertial to thermal intervals - rate of' dissipation e0'

Region V is the viscous interval, where kinetic energy, the

energy of turbulence, is converted to heat. in this region the rate

of energy transfer over the spectrum drops to zero.

in accordance with changes of rate of transfer of energy over

the spectrum in different regions -he form of spectral curve will also

be changed.
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From the assumption about homogeneity and local isotropy

Kolmagorov and Obukhov obtained an expression for the energy spectrum

of turbulence in the inertial interval - the "-5/3" spectral law

2 8

S (a) O &ýY(8)

If by definition in the inertial interval there are no

sources and consumers of turblent energy, but only inertial transfer
of energy over the spectrum from larger scales to smaller takes place, i

then in the interval of equilibrium (region II) both sources and

consumers of turbulent energy, which, however, compensate one another,
are at work. In spite of the fact that in the interval of quasi-
equilibrium the condition of local isotropy is known not to be met,
the spectrum in this interval also is described by the expression:

S (Q) - . (9)

The expression for the spectrum in the viscous interval is

obtained from the Geisenberg equation [5] and has the form:

$9)c'Q- 1. (10)

As regards the subdomain of buoyancy, the spectral curve here has slope

greater than 5/3 and is described, according to [3], by expression:

-$ 
-4S()W2" + $6 7- (11)}

IIT. Discrete Spectra. Wave Disturbances in
the Atmosphere

Everything said above pertains to continuous spectra. However,

among experimentally obtained spectra there also are such in which

turbulent motion in a wide range of scales is lacking. More precisely,
this motion have amplitudes smaller than the threshold of sensitivity

of the measuring equipment. Such discrete spectra are due to the
presence of stable wave disturbances, not transmitting their energy

to smaller scales.
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Sometimes the spectrum, continuous at wave numbers 2<G6, sharply

drops when 2>0. In this case one should either recognize that the
assumption about energy transfer in the continoua spectrum from larger
scales to smaller is not satisfied or should assume the. presence of

conversion df kinetic energy pulsations when O>-g, to some other A
forir-of energy.

We will, as before, consider that in turbulent flow energy
transfer from larger scales to smaller takes place. As alrEady
stated, growth of the rate of energy transfer - indicates the

0presence of a source of turbulent energy and, conversely, a decrease

of t indicates the presence of a consumer.

When spectrum of turbulence, and consequently and q--f(:), are

cont'inuous, such description, in general, is trivial. However. quite
another picture is obtained if with the same assumption about -the

direction df 'energy flow in the spectrum we turn to consideration of

tstabl-e;wave' 'disturbaices in a real medium, i.e., in a medium

posdsseing -dissipative properties (for example, viscosity).

-Let- us examine forced oscillations of air with frequency

corresponding to wave number S1. We know that if the source of these
6scbillations ceases to act, the oscillations will fade with time
owifig to internal friction (viscosity) of air. Let us try to analyze

--heiiemeaning of this.

An air mass has defined vicosity, depending on temperature and
density. Molecules of air are in random motion, where the .amaber of

-moleules in a unit 'volume and their average veiocaltv eter-mine tihe

"viscosity of the- air.

When we -say that osc-lltltion ofE air .'de, It means that the

mechanical energy of theso o•tillations turns to energy of molecular

motiqn.

If continuous wave oscillations exist in the atmosphere, it

means that they are supported coiistantly by an active external source,
4 
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The scale of di-turbanues generated by this source should, in any- case, |

be no less than the length of the continuous wave-. Consequently, in

case of stable wave disturbances alab the spectrabl energy flow

preserves its direction tou4ard larger wave numbers, and energy g0ing i

to larger scales Is tramsferred to the region of submolecular

scales. The spectrum in this case is discrete and has the form

presented in Fig. 4.L

Fig4 4. Spectrum of purely
wave disturbance in viscous--- •'tmedium.

-On the axis of abscissas to the first peak corresponds the [
wavelength of stable oscillation; to the second corresponds the

value of the order of the mean free path of molecules. i

Thus if the medium possesses viscosity, "sucking out" of

energy of any mechanical motion appearing in this medium will occur.

It is possible to apply the same reasoning to a medium in which

random motion with scales much larger than molecular exists, that is,

to a medium possessing turbulent viscosity. If in an air mass there

already are movements of defined scales, the intensity of these move-
ments can increase directly as a result of energy cf other mechanical

motion, even if it's scale is much greater. From this stand point

2" it is easy to explain the character of the spectral curve obtained

-:1 by Van der Hoven [7), having dips over a wide range of wave numbers.

Let us now consider cases when the spectrum is continuous over

a rather wide range of wave numbers, but then drops sharply.

I In examining of such rapidly dropping spectra we will, as po
J. earlier, consider that spectral energy flow is directed toward large" i

! wave numbers.. Inasmuch as such spectra are characteristic for stably
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stratified atmosphere, one should assume that rapid drop of spectrum

is explained bý the influence of forces tf buoyancy, which consume

"almost, all the energy arriving from the direction of smaller wave
nuiObersa,.

IV. Turbulence in a Thermallz Stable

With strong thermalVstability of atmosphere which for example,A is toypica of the stratosphere, for disturbance of laminarity flow

I laiUge wind gradients are necessary. The lv~ery fact of appearance and
d v6tpmemt ýo turbulence in such - medium indicates that this

I conditioni ZI) ýis fUltillsd.

However, although the reserve of thermal btztility i

insufficiently t:o impede generation of turbulence, the forces of
buoya.ncy ihtenively-OCunteract cascade energy transfer over the

BPetricm•. Thre6 eases, correspouding to the three curves in Fig. 5

are PO b here.

00I
il - Figi, M.Modifications of

turbulence spectra for
difas erent relationships a

f t e o abptw4oen intensities of
ecpr-�ro s ouce and consumer of mil turibulentt energy and for

-t t c t atheir different character-i!: istlc cales, .

V _4

-- :I" - --- . -&----

-2 1 . i. With very strong: thlermal •atbility of medium the spectrum

-6-f t 4*ub)lence_ can ýbe, 4localized-in a nar'roV band of wave numbers. In

-:9as the spectrum obtained as a-result of treatment of realiz atiJ.on

S- zf-_ - i--te length for practical pUrp-oses_ will not differ from the
S-_§p-ev-r~um of purely harmonle oscillation', if we use existing methods

!: .o--tatis~tical computer treat•ment. Such ""4quasi-wave"l disturbances
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I differ from those of "pure wave" type by the fact that in them energy

transfer from larger scales to smaller takes place, and then all
energy is expended on work against the forces of buoyancy.

2. With somewhat lesser thermal stability of atmosphere, as
well as with its greater d0nami- instability, and also in those cases
when the source of turbulent energy is located in the region of wave

numbers distant from the subdomain of buoyancy, the spectrum of

turbulence is found considerably broader and differs significantly
from the spectrum of purely harmonic oscillations. However, even in
this case the forces of buoyancy absorb all the kinetic energy of
turbulent pulsations.

3. The most frequently encountered case is that when there is-
a continuous spectrum of turbulence, in which kinetic energy is
transferred from larger scale to smaller. Part of the energy becomes
potential energy, and then in scales where the forces of buoyancy no
longer play an essential role there is inertial transfer in accordance

with the "-5/3" law. In the end all energy turns to heat in the
viscous interval.

A Diverse variants of spectra, shown in Fig. 5, are particular

I cases of the general diagram, presented in Fig. 3, and characterize.
distribution of energy in the spectrum df developed turbulenice, i.e.,
the stationary case. Duringexperimental investigations of turbulence
it sometimes is possible to obtain spectra of developing or fading

I turbulence. Such spectra have complicated form, and on them are
distinctly seen local (according to wave rumbers) sources of

turbulent energy, such, for example, as disintigrating gravitational 4

waves.

For the spectrum of developed turublence in a stably stratified
medium it is characteristic that the source of turbulent energy
lies in the region of small wave numbers, while the spectral curve
itself has only one peak in the region of generation.
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